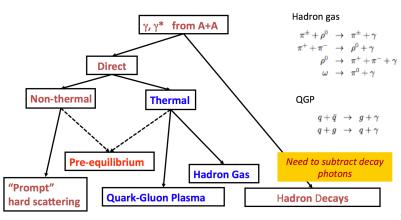
PHENIX measurements of low momentum direct photons from large ion collisions as a function of beam energy and system size

Deepali Sharma for the PHENIX Collaboration SUNY, Stony Brook

February 7th, 2017

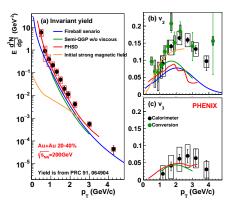


Direct Photon Sources in Heavy Ion Collisions

Direct photons are a unique probe

- Color blind
- Probe the full time evolution

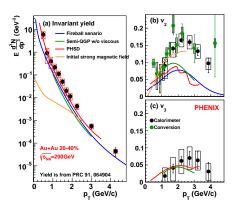
Production of photons:


Quark latte

Deepali 1 10 10⁷ log t (fm/c)

Direct Photon Puzzle

large yield and large v_2 in $\mathrm{Au} + \mathrm{Au}$


- ▶ Large yield → early emission
- ▶ Large v_2 → late emission

Direct Photon Puzzle

large yield and large v_2 in Au+Au

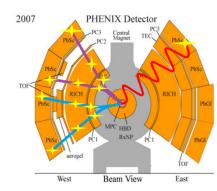
- $\blacktriangleright \ \, \text{Large yield} \rightarrow \text{early emission}$
- ▶ Large $v_2 \rightarrow$ late emission

Challenging to describe large yield and large anisotropy simultaneously

Experimentalist can provide

- measurement of different observables:
 - Yields
 - ► *V*₂, *V*₃,
- Collision energy dependence:200 GeV, 62 GeV, 39 GeV
- Large systems (hot medium):
 - Au+Au, Cu+Cu, Cu+Au
- ► Small systems (cold ??): p+p, p+Au, d+ Au, ³He+Au

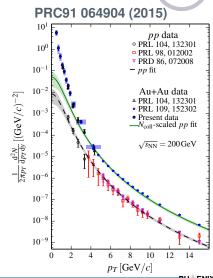
New results shown in this talk



Photon Measurement Techniques in PHENIX

Three independent methods at PHENIX

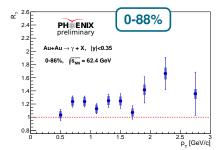
- Measuring energy deposited by photons in Calorimeter
 - ▶ Good resolution at high p_T
 - Low pt contaminated by hadrons
- ► Internal photon conversions
 - Measure virtual photons
 - Reduction in background from π⁰ Dalitz decays by a factor of 5
 - Low p_T reach is limited (~ 1 GeV) as well as high p_T
- External photon conversions
 - Measure real photons
 - ► Extends to p_T << 1 GeV, little hadron contamination
 - ightharpoonup High p_T reach is limited



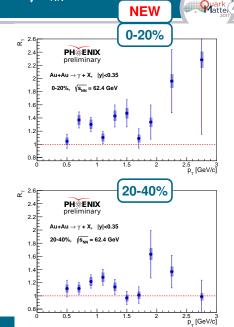
Photon Measurement Techniques in PHENIX

Three independent methods at PHENIX

- Measuring energy deposited by photons in Calorimeter
 - ► Good resolution at high p_T
 - ► Low pt contaminated by hadrons
- ► Internal photon conversions
 - Measure virtual photons
 - Reduction in background from π⁰ Dalitz decays by a factor of 5
 - Low p_T reach is limited (~ 1 GeV) as well as high p_T
- External photon conversions
 - Measure real photons
 - ► Extends to p_T << 1 GeV, little hadron contamination
 - ► High p_T reach is limited



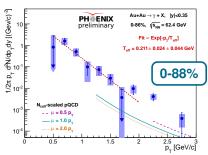
3 independent measurements in good agreement with each other


Direct Photon in Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV

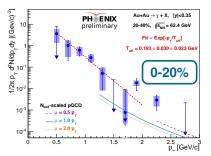
External Conversion Technique

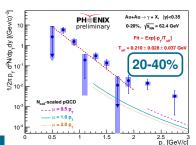
- Conversions reconstructed at detector material (HBD back plane)
- $ightharpoonup R_{\gamma} = N_{\gamma}^{incl}/N_{\gamma}^{hadron}$

Clear direct photon signal in Au+Au at 62.4 GeV



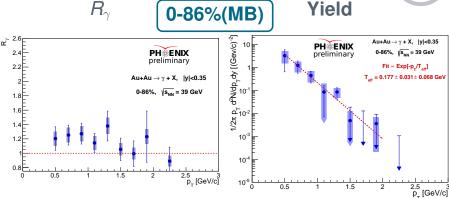
Direct Photon in Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV



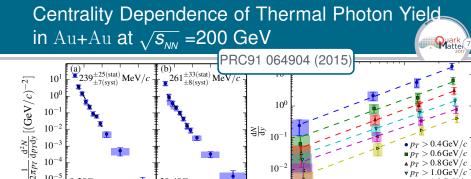


$$\gamma^{direct} = (R_{\gamma} - 1) \times \gamma^{hadron}$$

Minimum bias unsubtracted γ_{prompt} $T_{eff}=0.211\pm0.024\pm0.044$ GeV pQCD calculations by W. Vogelsang



Direct Photon in Au+Au at $\sqrt{s_{NN}}$ = 39 GeV


NEW

- ► Direct photon signal also seen in Au+Au at $\sqrt{s_{NN}} = 39$ GeV
- ▶ Minimum bias unsubtracted γ_{prompt} $T_{eff} = 0.177 \pm 0.031 \pm 0.068$ GeV

 10^{-3}

20-40%

 $242_{\pm 6 (\text{syst})}^{\pm 50 (\text{stat})} \,\text{MeV}/c$

 $p_T [\text{GeV}/c]$

Au+Au $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$

- ► Yield grows faster than N_{part}
- $T_{eff} = 0.244 \pm 0.028 \pm 0.007 \text{ GeV}$

 $\triangleleft p_T > 1.2 \text{GeV}/c$ $p_T > 1.4 \text{GeV}/c$

 10^{2} $N_{\rm part}$

 10^{-5}

 10^{1}

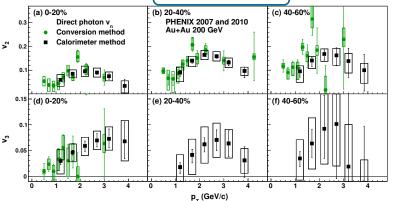
 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

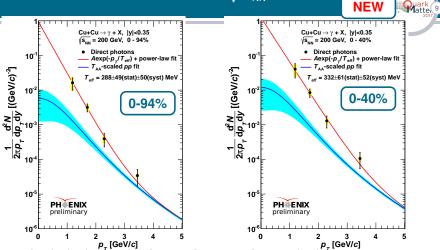
 10^{-4}


 10^{-5}

0-20%

 $226_{\pm 6(\text{syst})}^{\pm 28(\text{stat})} \,\text{MeV}/c$

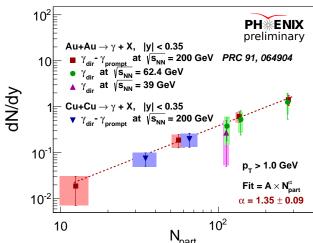
Direct Photon v_n in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$



- ▶ Sizeable v_2 and v_3 ($\sim v_2/2$)observed at low p_T , comparable to hadron v_2
- ▶ Strong centrality dependence for v_2 , not so clear for v_3
- ▶ Unclear if $v_2 \rightarrow 0$ for $p_T \rightarrow 0$

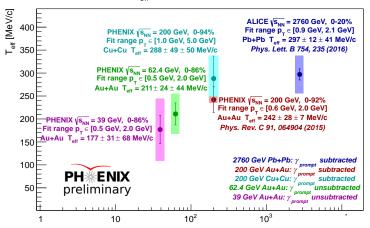
Mark atte

Direct Photon in Cu+Cu at $\sqrt{s_{NN}}$ =200 GeV

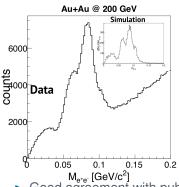

- Analysis done using **internal conversion** method
- ► Clear direct photon signal in Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV
- $ightharpoonup T_{eff}$ consistent within the large uncertainty with Au+Au

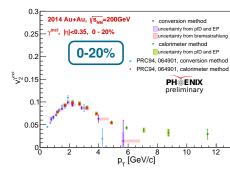
See poster by T. Hoshino (EM Probes: Board J08)

Direct Photon Yield vs N_{part}


► Yield increases faster than N_{part}

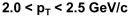
T_{eff} versus $\sqrt{s_{_{NN}}}$

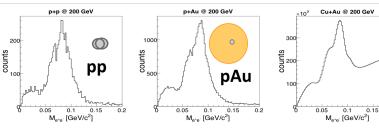

T_{eff} vs. collision energy



Hint of increase of T_{eff} with $\sqrt{s_{_{NN}}}$, but also consistent with a constant fit PH*ENIX

Inclusive Photon v₂ from new 2014 Au+Au Date




- $M_{e'e'}$ [GeV/c²] Good agreement with published v_2 results
- 22% of total 2014 data
- ▶ Horizontal errors are uncertanity in the p_T reconstruction of e^+e^- resulting from bremsstrahlung due to increased material budget
- ▶ Will provide high p_T coverage for both EMCal and Conversion photon methods

Future Measurements: Different Systems

0.2

Clear signal visible in all systems These different systems will provide interesting information

- ▶ Direct photon spectrum shape at low p_T in p+p
- ► Are there thermal photons in p+Au, d+ Au, ³He+Au systems?
- ► Cu+Au collisons to shed light on magnetic field effects if any

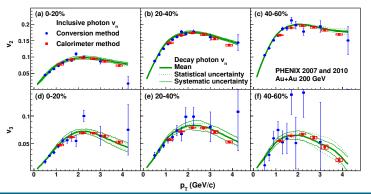
Summary and Outlook

Summary

- Well established measurements of low p_T direct photons in Au+Au at 200 GeV
 - Large yield above expected contribution from pQCD
 - Centrality dependence of yield ~ N_{part}^{1.4}
 - ► Large *v*₂ with respect to reaction plane
- ▶ Direct photon spectra measured in Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV and Au+Au collisions at 62.4 and 39 GeV
 - ► Consistent with the observed $\sim N_{part}^{1.4}$ dependence
 - ► Slight increase of *T*_{eff} with collision energy

Outlook

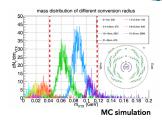
- Significantly improved v_n results expected from 2014 Au+Au data
- ▶ Data from different collision geometry Cu+Au (2012)
- ► Low momentum data from p+p (2015)
- ► Search for direct photons in small systems: ³He+Au (2014), p+Au (2015), d+ Au (2016)

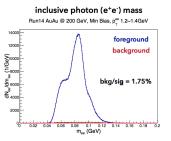


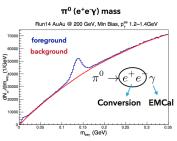
Back-Ups

Inclusive and Decay Photon v_n in Au+Au at \sqrt{s} = 200 GeV

- Measure azimuthal distribution of photons relative to the reaction plane
- Results using two photon identification techniques EMCal and External conversions
- ▶ Model decay photon v_n based on the measured π^0 v_n
 - Other hadrons $(\eta, \eta', \omega) v_n$ estimated from KE_T scaling






New Conversion Photon Reconstruction Technique (2014 Au+Au data)

Identify and reconstruct photons via external conversion to e⁺e⁻ pairs

- Previous method used single e⁺/e⁻ tracks (2010)
- Conversions at fixed radius (Hadron Blind Detector readout plane at 60cm, ~3%)
- New method used e⁺e⁻ pairs (>2011)
- Conversions at any material (VTX 3^{rd} and 4^{th} layer, $\sim 10\%$)

Nark atte 17